Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Trop Med Infect Dis ; 8(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38133450

RESUMO

Migratory flows and international travel are triggering an increase in imported cases of schistosomiasis in non-endemic countries. The present study aims to evaluate the effectiveness of the LAMP technique on patients' urine samples for the diagnosis of imported schistosomiasis in a non-endemic area in comparison to a commercial immunochromatographic test and microscopic examination of feces and urine. A prospective observational study was conducted in sub-Saharan migrants attending the Tropical Medicine Unit, Almería, Spain. For schistosomiasis diagnosis, serum samples were tested using an immunochromatographic test (Schistosoma ICT IgG-IgM). Stool and urine samples were examined by microcopy. Urine samples were evaluated by combining three LAMP assays for the specific detection of Schistosoma mansoni, S. haematobium, and for the genus Schistosoma. To evaluate the diagnostic accuracy, a latent class analysis (LCA) was performed. In total, 115 patients were included (92.2% male; median age: 28.3 years). Of these, 21 patients (18.3%) were diagnosed with schistosomiasis confirmed by microscopy, with S. haematobium being the most frequent species identified (18/115; 15.7%). The Schistosoma ICT IgG-IgM test result was 100% positive and Schistosoma-LAMP was 61.9% positive, reaching as high as 72.2% for S. haematobium. The sensitivity and specificity estimated by LCA, respectively, were: 92% and 76% for Schistosoma ICT IgG-IgM, 68% and 44% for Schistosoma-LAMP, and 46% and 97% for microscopy. In conclusion, the Schistosoma-LAMP technique presented a higher sensitivity than microscopy for the diagnosis of imported urinary schistosomiasis, which could improve the diagnosis of active infection, both in referral centers and in centers with limited experience or scarce resources and infrastructure.

2.
Parasit Vectors ; 16(1): 393, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907997

RESUMO

BACKGROUND: Strongyloides stercoralis infection is a common neglected tropical disease distributed worldwide, mainly in tropical and subtropical climates. The impact of S. stercoralis infections on human health ranges from mild asymptomatic infections to chronic strongyloidiasis unnoticeable until the host is immunosuppressed. In severe strongyloidiasis, a syndrome of hyperinfection and larval dissemination to various organs can occur with high mortality rates. The diagnosis of strongyloidiasis is challenging because of the absence of a single standard reference test with high sensitivity and specificity, which also makes it difficult to estimate the accuracy of other diagnostic tests. This study aimed to evaluate, for the first time, the use of an easy-to-perform loop-mediated isothermal amplification (LAMP) colorimetric assay (named Strong-LAMP) for the molecular screening of strongyloidiasis in stool samples from patients in a low-resource endemic area in Cubal, Angola. To compare different LAMP application scenarios, the performance of the Strong-LAMP under field conditions in Angola was reassessed in a well-equipped reference laboratory in Spain and compared with a quantitative polymerase chain reaction (qPCR) method. METHODS: A total of 192 stool samples were collected from adult population in Cubal, Angola, and examined by parasitological methods (direct saline microscopy and Baermann's technique). DNA was extracted from each stool sample using a commercial kit and tested by the colorimetric Strong-LAMP assay for the detection of Strongyloides spp. under field conditions. Furthermore, all samples were shipped to a well-equipped laboratory in Spain, reanalysed by the same procedure and compared with a qPCR method. The overall results after testing were compared. RESULTS: Strongyloides stercoralis larvae were identified by direct saline microscopy and Baermann in a total of 10/192 (5.2%) and 18/192 (9.4%) stool samples, respectively. Other helminth and protozoan species were also identified. The Strong-LAMP-positive results were visually detected in 69/192 (35.9%) stool samples. The comparison of Strong-LAMP results in field conditions and at a reference laboratory matched in a total of 146/192 (76.0%) samples. A total of 24/192 (12.5%) stool samples tested positive by qPCR. CONCLUSIONS: This is the first study in which colorimetric Strong-LAMP has been clinically evaluated in a resource-poor strongyloidiasis endemic area. Strong-LAMP has been shown to be more effective in screening for strongyloidiasis than parasitological methods under field conditions and qPCR in the laboratory. Our Strong-LAMP has proven to be a field-friendly and highly accurate molecular test for the diagnosis of strongyloidiasis.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Adulto , Animais , Humanos , Estrongiloidíase/diagnóstico , Estrongiloidíase/epidemiologia , Angola , Strongyloides stercoralis/genética , Laboratórios , Fezes
3.
Am J Trop Med Hyg ; 109(6): 1368-1371, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37931298

RESUMO

Onchocerciasis has been declared eliminated in Ecuador and surveillance measures are of great interest. In this study, we examined the infectivity rates of Simulium exiguum by Onchocerca volvulus in previously hyperendemic areas in Esmeraldas province of Ecuador. These areas had previously undergone mass administration of ivermectin, which led to the interruption of transmission in 2009 and the certification of elimination in 2014. The study included three communities in Río Cayapas and one in Río Canandé, and a total of 2,950 adult S. exiguum were collected in 2018. We used quantitative polymerase chain reaction with O. volvulus O-150 plasmid control DNA to analyze 59 pools. Our findings revealed that the infectivity rates were zero, indicating that the transmission of O. volvulus remained suspended in the area.


Assuntos
Volvo Intestinal , Onchocerca volvulus , Oncocercose , Simuliidae , Humanos , Animais , Adulto , Oncocercose/diagnóstico , Oncocercose/epidemiologia , Oncocercose/prevenção & controle , Onchocerca volvulus/genética , Reação em Cadeia da Polimerase em Tempo Real , Equador/epidemiologia , Ivermectina/uso terapêutico , Onchocerca/genética
4.
Infect Dis Poverty ; 12(1): 95, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845734

RESUMO

BACKGROUND: The complexity of the Chagas disease and its phases is impossible to have a unique test for both phases and a lot of different epidemiological scenarios. Currently, serology is the reference standard technique; occasionally, results are inconclusive, and a different diagnostic technique is needed. Some guidelines recommend molecular testing. A systematic review and meta-analysis of available molecular tools/techniques for the diagnosis of Chagas disease was performed to measure their heterogeneity and efficacy in detecting Trypanosoma cruzi infection in blood samples. METHODS: A systematic review was conducted up to July 27, 2022, including studies published in international databases. Inclusion and exclusion criteria were defined to select eligible studies. Data were extracted and presented according to PRISMA 2020 guidelines. Study quality was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). A random-effects model was used to calculate pooled sensitivity, specificity, and diagnostic odds ratio (DOR). Forest plots and a summary of the receiving operating characteristics (SROC) curves displayed the outcomes. Heterogeneity was determined by I2 and Tau2 statistics and P values. Funnel plots and Deek's test were used to assess publication bias. A quantitative meta-analysis of the different outcomes in the two different clinical phases was performed. RESULTS: We identified 858 records and selected 32 papers. Studies pertained to endemic countries and nonendemic areas with adult and paediatric populations. The sample sizes ranged from 17 to 708 patients. There were no concerns regarding the risk of bias and applicability of all included studies. A positive and nonsignificant correlation coefficient (S = 0.020; P = 0.992) was obtained in the set of studies that evaluated diagnostic tests in the acute phase population (ACD). A positive and significant correlation coefficient (S = 0.597; P < 0.000) was obtained in the case of studies performed in the chronic phase population (CCD). This resulted in high heterogeneity between studies, with the master mix origin and guanidine addition representing significant sources. INTERPRETATION/CONCLUSIONS AND RELEVANCE: The results described in this meta-analysis (qualitative and quantitative analyses) do not allow the selection of the optimal protocol of molecular method for the study of Trypanosoma cruzi infection in any of its phases, among other reasons due to the complexity of this infection. Continuous analysis and optimization of the different molecular techniques is crucial to implement this efficient diagnosis in endemic areas.


Assuntos
Doença de Chagas , Adulto , Criança , Humanos , Sensibilidade e Especificidade , Doença de Chagas/diagnóstico , Doença de Chagas/epidemiologia
5.
Parasit Vectors ; 16(1): 343, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789462

RESUMO

BACKGROUND: Malaria is a globally distributed infectious disease. According to the World Health Organization, Angola is one of the six countries that account for over half the global malaria burden in terms of both malaria cases and deaths. Diagnosis of malaria still depends on microscopic examination of thin and thick blood smears and rapid diagnostic tests (RDTs), which often lack analytical and clinical sensitivity. Molecular methods could overcome these disadvantages. The aim of this study was to evaluate, for the first time to our knowledge, the performance of a loop-mediated isothermal amplification (LAMP) for the diagnosis of malaria in an endemic area in Cubal, Angola, and to assess the reproducibility at a reference laboratory. METHODS: A total of 200 blood samples from patients attended at Hospital Nossa Senhora da Paz, Cubal, Angola, were analysed for Plasmodium spp. detection by microscopy, RDTs, and LAMP. LAMP assay was easily performed in a portable heating block, and the results were visualized by a simple colour change. Subsequently, the samples were sent to a reference laboratory in Spain to be reanalysed by the same colorimetric LAMP assay and also in real-time LAMP format. RESULTS: In field tests, a total of 67/200 (33.5%) blood samples were microscopy-positive for Plasmodium spp., 98/200 RDT positive, and 112/200 (56%) LAMP positive. Using microscopy as reference standard, field LAMP detected more microscopy-positive samples than RDTs (66/67; 98% vs. 62/67; 92.5%). When samples were reanalysed at a reference laboratory in Spain using both colorimetric and real-time assays, the overall reproducibility achieved 84.5%. CONCLUSIONS: This is the first study to our knowledge in which LAMP has been clinically evaluated on blood samples in a resource-poor malaria-endemic area. The colorimetric LAMP proved to be more sensitive than microscopy and RDTs for malaria diagnosis in field conditions. Furthermore, LAMP showed an acceptable level of reproducibility in a reference laboratory. The possibility to use LAMP in a real-time format in a portable device reinforces the reliability of the assay for molecular diagnosis of malaria in resource-poor laboratories in endemic areas.


Assuntos
Malária Falciparum , Malária , Plasmodium , Humanos , Reprodutibilidade dos Testes , Angola , Laboratórios , Sensibilidade e Especificidade , Malária/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Malária Falciparum/diagnóstico
6.
Artigo em Inglês | IBECS | ID: ibc-226410

RESUMO

Schistosomiasis is a highly prevalent disease, especially in immigrant populations, and is associated with significant morbidity and diagnostic delays outside endemic areas. For these reasons, the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) and the Spanish Society of Tropical Medicine and International Health (SEMTSI) have developed a joint consensus document to serve as a guide for the screening, diagnosis and treatment of this disease outside endemic areas. A panel of experts from both societies identified the main questions to be answered and developed recommendations based on the scientific evidence available at the time. The document was reviewed by the members from both societies for final approval (AU)


La esquistosomiasis es una enfermedad de elevada prevalencia, especialmente en población inmigrante, asociada a importante morbilidad y retraso diagnóstico fuera de zona endémica. Por estas razones, la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC) y la Sociedad Española de Medicina Tropical y Salud Internacional (SEMTSI) han elaborado un documento conjunto de consenso que sirva de guía para el cribado, diagnóstico y tratamiento de esta patología en zonas no endémicas. Un panel de expertos de ambas sociedades identificó las principales preguntas a responder y elaboró las recomendaciones siguiendo la evidencia científica disponible en el momento. El documento fue revisado por los miembros de ambas sociedades para su aprobación final (AU)


Assuntos
Humanos , Esquistossomose/diagnóstico , Esquistossomose/tratamento farmacológico , Sociedades Médicas , Espanha , Consenso
7.
Enferm Infecc Microbiol Clin (Engl Ed) ; 41(8): 505-512, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37230838

RESUMO

Schistosomiasis is a highly prevalent disease, especially in immigrant populations, and is associated with significant morbidity and diagnostic delays outside endemic areas. For these reasons, the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) and the Spanish Society of Tropical Medicine and International Health (SEMTSI) have developed a joint consensus document to serve as a guide for the screening, diagnosis and treatment of this disease outside endemic areas. A panel of experts from both societies identified the main questions to be answered and developed recommendations based on the scientific evidence available at the time. The document was reviewed by the members from both societies for final approval.

8.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047384

RESUMO

Crimean-Congo haemorrhagic fever (CCHF) is a potentially lethal tick-borne viral disease with a wide distribution. In Spain, 12 human cases of CCHF have been confirmed, with four deaths. The diagnosis of CCHF is hampered by the nonspecific symptoms, the high genetic diversity of CCHFV, and the biosafety requirements to manage the virus. RT-qPCR and serological tests are used for diagnosis with limitations. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) could be an effective alternative in the diagnosis of the disease. However, none of the few RT-LAMP assays developed to date has detected different CCHFV genotypes. Here, we designed a RT-LAMP using a degenerate primer set to compensate for the variability of the CCHFV target sequence. RT-LAMP was performed in colorimetric and real-time tests on RT-qPCR-confirmed CCHF patient samples notified in Spain in 2020 and 2021. Urine from an inpatient was analysed by RT-LAMP for the first time and compared with RT-qPCR. The amplicons obtained by RT-qPCR were sequenced and African III and European V genotypes were identified. RT-LAMP amplified both genotypes and was more sensitive than RT-qPCR in urine samples. We have developed a novel, rapid, specific, and sensitive RT-LAMP test that allows the detection of different CCHFV genotypes in clinical samples. This pan-CCHFV RT-LAMP detected viral RNA for the first time in urine samples. It can be easily performed as a single-tube isothermal colorimetric method on a portable platform in real time and without the need for expensive equipment, thus bringing molecular diagnostics closer to rural or resource-poor areas, where CCHF usually occurs.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/diagnóstico , Espanha , Genótipo
9.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614336

RESUMO

Loop-mediated isothermal amplification (LAMP) is the most popular technology for point-of-care testing applications due its rapid, sensitive and specific detection with simple instrumentation compared to PCR-based methods. Many systems for reading the results of LAMP amplifications exist, including real-time fluorescence detection using fluorophore-labelled probes attached to oligonucleotide sequences complementary to the target nucleic acid. This methodology allows the simultaneous detection of multiple targets (multiplexing) in one LAMP assay. A method for multiplexing LAMP is the amplification by release of quenching (DARQ) technique by using a 5'-quencher modified LAMP primer annealed to 3'-fluorophore-labelled acting as detection oligonucleotide. The main application of multiplex LAMP is the rapid and accurate diagnosis of infectious diseases, allowing differentiation of co-infecting pathogens in a single reaction. Schistosomiasis, caused among other species by Schistosoma mansoni and strongyloidiasis, caused by Strongyloides stercoralis, are the most common helminth-parasite infections worldwide with overlapping distribution areas and high possibility of coinfections in the human population. It would be of great interest to develop a duplex LAMP to detect both pathogens in the same reaction. In this study, we investigate the use of our two previously developed and well-stablished LAMP assays for S. mansoni and Strongyloides spp. DNA detection in a new duplex real-time eight-primer system based on a modified DARQ probe method that can be performed in a portable isothermal fluorimeter with minimal laboratory resources. We also applied a strategy to stabilize the duplexed DARQ-LAMP mixtures at room temperature for use as ready-to-use formats facilitating analysis in field settings as point-of-care diagnostics for schistosomiasis and strongyloidiasis.


Assuntos
Esquistossomose , Strongyloides stercoralis , Estrongiloidíase , Animais , Humanos , Schistosoma mansoni/genética , Sistemas Automatizados de Assistência Junto ao Leito , DNA de Helmintos/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Strongyloides stercoralis/genética , Oligonucleotídeos , Corantes Fluorescentes , Sensibilidade e Especificidade
10.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430586

RESUMO

Since the onset of the COVID-19 pandemic, over 610 million cases have been diagnosed and it has caused over 6.5 million deaths worldwide. The crisis has forced the scientific community to develop tools for disease control and management at a pace never seen before. The control of the pandemic heavily relies in the use of fast and accurate diagnostics, that allow testing at a large scale. The gold standard diagnosis of viral infections is the RT-qPCR. Although it provides consistent and reliable results, it is hampered by its limited throughput and technical requirements. Here, we discuss the main approaches to rapid and point-of-care diagnostics based on RT-qPCR and isothermal amplification diagnostics. We describe the main COVID-19 molecular diagnostic tests approved for self-testing at home or for point-of-care testing and compare the available options. We define the influence of specimen selection and processing, the clinical validation, result readout improvement strategies, the combination with CRISPR-based detection and the diagnostic challenge posed by SARS-CoV-2 variants for different isothermal amplification techniques, with a particular focus on LAMP and recombinase polymerase amplification (RPA). Finally, we try to shed light on the effect the improvement in molecular diagnostics during the COVID-19 pandemic could have in the future of other infectious diseases.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos
11.
Biosensors (Basel) ; 12(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35735571

RESUMO

Nucleic acid amplification diagnostics offer outstanding features of sensitivity and specificity. However, they still lack speed and robustness, require extensive infrastructure, and are neither affordable nor user-friendly. Thus, they have not been extensively applied in point-of-care diagnostics, particularly in low-resource settings. In this work, we have combined the loop-mediated isothermal amplification (LAMP) technology with a handheld portable device (SMART-LAMP) developed to perform real-time isothermal nucleic acid amplification reactions, based on simple colorimetric measurements, all of which are Bluetooth-controlled by a dedicated smartphone app. We have validated its diagnostic utility regarding different infectious diseases, including Schistosomiasis, Strongyloidiasis, and COVID-19, and analyzed clinical samples from suspected COVID-19 patients. Finally, we have proved that the combination of long-term stabilized LAMP master mixes, stored and transported at room temperature with our developed SMART-LAMP device, provides an improvement towards true point-of-care diagnosis of infectious diseases in settings with limited infrastructure. Our proposal could be easily adapted to the diagnosis of other infectious diseases.


Assuntos
COVID-19 , Doenças Transmissíveis , Ácidos Nucleicos , COVID-19/diagnóstico , Colorimetria , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade , Smartphone
12.
Trop Med Int Health ; 27(8): 686-695, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653502

RESUMO

OBJECTIVES: Loa loa and Mansonella perstans are two very common filarial species in Africa. Although microscopy is the traditional diagnostic method for human filariasis, several polymerase chain reaction (PCR) methods have emerged as an alternative approach for identifying filarial parasites. The aim of this study is to compare three molecular methods and decide which is the most suitable for diagnosing human loiasis and mansonellosis in non-endemic regions using dried blood spot (DBS) as a medium for sample collection and storage. METHODS: A total of 100 DBS samples, with their corresponding thin and thick blood smears, were selected for this study. Microscopy was used as the reference method to diagnose and calculate the microfilaraemia. Filarial DNA was extracted using the saponin/Chelex method and the DNA isolated was assayed by Filaria-real time-PCR, filaria-nested PCR, and cytochrome oxidase I PCR. All PCR products were subsequently purified and sequenced. The statistical values for each molecular test were calculated and compared. RESULTS: Overall, 64 samples were identified as negative by all tests and a further 36 samples were positive by at least one of the methods used. The sensitivity and specificity were similar for the different molecular methods, all of which demonstrated good agreement with microscopy. CONCLUSIONS: Based on this study, and from a practical point of view (single and short amplification round), the optimal technique for diagnosing filarial infection in non-endemic regions is filaria-real time-PCR, which presents high sensitivity and specificity and is also able to detect a wide range of human filariae.


Assuntos
Loíase , Mansonelose , Animais , Humanos , Loa/genética , Loíase/diagnóstico , Loíase/parasitologia , Mansonella/genética , Mansonelose/diagnóstico , Mansonelose/parasitologia , Reação em Cadeia da Polimerase
13.
Diagnostics (Basel) ; 12(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35626235

RESUMO

Loiasis, caused by the filarial nematode Loa loa, is endemic in Central and West Africa. Loa loa has been associated with severe adverse reactions in high Loa-infected individuals receiving ivermectin during mass drug administration programs for the control of onchocerciasis and lymphatic filariasis. Diagnosis of loiasis still depends on microscopy in blood samples, but this is not effective for large-scale surveys. New diagnostics methods for loiasis are urgently needed. Previously, we developed a colorimetric high-sensitive and species-specific LAMP for Loa loa DNA detection. Here, we evaluate it in a set of 100 field-collected clinical samples stored as dried blood spots. In addition, Loa loa-LAMP was also evaluated in real-time testing and compared with microscopy and a specific PCR/nested PCR. A simple saponin/Chelex-based method was used to extract DNA. Colorimetric and real-time LAMP assays detected more samples with microscopy-confirmed Loa loa and Loa loa/Mansonella perstans mixed infections than PCR/nested-PCR. Samples with the highest Loa loa microfilariae counts were amplified faster in real-time LAMP assays. Our Loa loa-LAMP could be a promising molecular tool for the easy, rapid and accurate screening of patients for loiasis in endemic areas with low-resource settings. The real-time testing (feasible in a handheld device) could be very useful to rule out high-microfilariae loads in infected patients.

14.
Diagnostics (Basel) ; 11(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804255

RESUMO

Neglected Tropical Diseases (NTDs), particularly those caused by parasites, remain a major Public Health problem in tropical and subtropical regions, with 10% of the world population being infected. Their management and control have been traditionally hampered, among other factors, by the difficulty to deploy rapid, specific, and affordable diagnostic tools in low resource settings. This is especially true for complex PCR-based methods. Isothermal nucleic acid amplification techniques, particularly loop-mediated isothermal amplification (LAMP), appeared in the early 21st century as an alternative to PCR, allowing for a much more affordable molecular diagnostic. Here, we present the status of LAMP assays development in parasite-caused NTDs. We address the progress made in different research applications of the technique: xenomonitoring, epidemiological studies, work in animal models and clinical application both for diagnosis and evaluation of treatment success. Finally, we try to shed a light on the improvements needed to achieve a true point-of-care test and the future perspectives in this field.

15.
Diagnostics (Basel) ; 11(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806456

RESUMO

The SARS-CoV-2 pandemic has forced all countries worldwide to rapidly develop and implement widespread testing to control and manage the Coronavirus Disease 2019 (COVID-19). reverse-transcription (RT)-qPCR is the gold standard molecular diagnostic method for COVID-19, mostly in automated testing platforms. These systems are accurate and effective, but also costly, time-consuming, high-technological, infrastructure-dependent, and currently suffer from commercial reagent supply shortages. The reverse-transcription loop-mediated isothermal amplification (RT-LAMP) can be used as an alternative testing method. Here, we present a novel versatile (real-time and colorimetric) RT-LAMP for the simple (one-step), affordable (~1.7 €/sample), and rapid detection of SARS-CoV-2 targeting both ORF1ab and N genes of the novel virus genome. We demonstrate the assay on RT-qPCR-positive clinical samples, obtaining most positive results under 25 min. In addition, a novel 30-min one-step drying protocol has been developed to stabilize the RT-LAMP reaction mixtures, allowing them to be stored at room temperature functionally for up to two months, as predicted by the Q10. This Dry-RT-LAMP methodology is suitable for potentially ready-to-use COVID-19 diagnosis. After further testing and validation, it could be easily applied both in developed and in low-income countries yielding rapid and reliable results.

16.
J Clin Med ; 10(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810080

RESUMO

Schistosomiasis is a disease of great medical and veterinary importance in tropical and subtropical regions caused by different species of parasitic flatworms of the genus Schistosoma. The emergence of natural hybrids of schistosomes indicate the risk of possible infection to humans and their zoonotic potential, specifically for Schistosoma haematobium and S. bovis. Hybrid schistosomes have the potential to replace existing species, generate new resistances, pathologies and extending host ranges. Hybrids may also confuse the serological, molecular and parasitological diagnosis. Currently, LAMP technology based on detection of nucleic acids is used for detection of many agents, including schistosomes. Here, we evaluate our previously developed species-specific LAMP assays for S. haematobium, S. mansoni, S. bovis and also the genus-specific LAMP for the simultaneous detection of several Schistosoma species against both DNA from pure and, for the first time, S. haematobium x S. bovis hybrids. Proper operation was evaluated with DNA from hybrid schistosomes and with human urine samples artificially contaminated with parasites' DNA. LAMP was performed with and without prior DNA extraction. The genus-specific LAMP properly amplified pure Schistosoma species and different S. haematobium-S. bovis hybrids with different sensitivity. The Schistosoma spp.-LAMP method is potentially adaptable for field diagnosis and disease surveillance in schistosomiasis endemic areas where human infections by schistosome hybrids are increasingly common.

17.
Iran J Parasitol ; 16(1): 91-100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33786051

RESUMO

BACKGROUND: Schistosomiasis has been identified as a major public health problem in tropical countries. The present study aimed to investigate the schistosomicidal effects of the methanolic extract of Argemone mexicana L. and its active component, berberine against Schistosoma mansoni on in-vitro experiments. METHODS: S. mansoni adults were used. Various concentrations of the methanolic extract (10 - 200 µg/ml) and berberine (2.5 - 50 µM) were tested from 24 to 72 h. The viability of S. mansoni was confirmed with an invertoscope-microscope. Furthermore, cytotoxic (Hemolysis test), and antioxidant (DPPH radical scavenging assay) capacities were determined. RESULTS: The viability tests on S. mansoni showed that A. mexicana at 50 µg/mL is lethal at 48 h and berberine at 10 µM is lethal at 24 h. The hemolytic activity at 1,000 µg/mL was 2.9% for A. mexicana and 90.2% for berberine. The antioxidant capacities shown by A. mexicana and berberine, were EC50 156.3 and 84.1 µg/mL, respectively. CONCLUSION: The extract of A. mexicana and berberine demonstrated high antischistosomal activities in low concentration and short exposure time on the in-vitro model.

18.
Sci Rep ; 11(1): 4476, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627744

RESUMO

Schistosoma mansoni is less susceptible to the antiparasitic drug ivermectin than other helminths. By inhibiting the P-glycoprotein or cytochrome P450 3A in mice host or parasites in a murine model, we aimed at increasing the sensitivity of S. mansoni to the drug and thus preventing infection. We assigned 124 BALB/c mice to no treatment, treatment with ivermectin only or a combination of ivermectin with either cobicistat or elacridar once daily for three days before infecting them with 150 S. mansoni cercariae each. The assignment was done by batches without an explicit randomization code. Toxicity was monitored. At eight weeks post-infection, mice were euthanized. We determined number of eggs in intestine and liver, adult worms in portal and mesenteric veins. Disease was assessed by counting granulomas/cm2 of liver and studying organ weight indices and total weight. IgG levels in serum were also considered. No difference between groups treated with ivermectin only or in combination with cobicistat or elacridar compared with untreated, infected controls. Most mice treated with ivermectin and elacridar suffered severe neurological toxicity. In conclusion, systemic treatment with ivermectin, even in the presence of pharmacological inhibition of P-glycoprotein or cytochrome P450 3A, did not result in effective prophylaxis for S. mansoni infection in an experimental murine model.


Assuntos
Acridinas/farmacologia , Cobicistat/farmacologia , Ivermectina/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Tetra-Hidroisoquinolinas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antiparasitários/farmacologia , Citocromo P-450 CYP3A/metabolismo , Feminino , Granuloma/tratamento farmacológico , Granuloma/parasitologia , Imunoglobulina G/metabolismo , Intestinos/parasitologia , Fígado/parasitologia , Masculino , Veias Mesentéricas/metabolismo , Veias Mesentéricas/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Contagem de Ovos de Parasitas/métodos , Esquistossomose mansoni/metabolismo
19.
J Clin Med ; 10(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535489

RESUMO

Human schistosomiasis is one of the most important parasitic diseases, causing around 250 million cases (mostly in Africa) and 280,000-500,000 deaths every year. Due to the limited resources and the far-removed nature of many endemic areas, the implementation of new, sensitive and specific diagnostic tools has had little success. This is particularly true for PCR-based molecular methods that require expensive equipment and trained personnel to be executed. Loop-mediated isothermal amplification (LAMP) along with other isothermal techniques appeared in the early 21st century as an alternative to those methods, overcoming some of the aforementioned limitations and achieving a more inexpensive diagnostic. However, to this date, neither LAMP nor any other isothermal technique have signified a meaningful change in the way schistosomiasis diagnosis is routinely performed. Here, we present the recent developments in LAMP-based schistosomiasis diagnosis. We expose the main advantages and disadvantages of LAMP technology over PCR and other classical diagnostic methods focusing in various research approaches on intermediate hosts, animal models and patients. We also examine its potential clinical application in post-therapy monitoring, as well as its usefulness as a point-of-care test.

20.
J Clin Med ; 11(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011899

RESUMO

Detection of SARS-CoV-2 is routinely performed in naso/oropharyngeal swabs samples from patients via RT-qPCR. The RT-LAMP technology has also been used for viral RNA detection in respiratory specimens with both high sensitivity and specificity. Recently, we developed a novel RT-LAMP test for SARS-CoV-2 RNA detection in nasopharyngeal swab specimens (named, N15-RT-LAMP) that can be performed as a single-tube colorimetric method, in a real-time platform, and as dry-LAMP. To date, there has been very little success in detecting SARS-CoV-2 RNA in urine by RT-qPCR, and the information regarding urine viral excretion is still scarce and not comprehensive. Here, we tested our N15-RT-LAMP on the urine of 300 patients admitted to the Hospital of Salamanca, Spain with clinical suspicion of COVID-19, who had a nasopharyngeal swab RT-qPCR-positive (n = 100), negative (n = 100), and positive with disease recovery (n = 100) result. The positive group was also tested by RT-qPCR for comparison to N15-RT-LAMP. Only a 4% positivity rate was found in the positive group via colorimetric N15-RT-LAMP and 2% via RT-qPCR. Our results are consistent with those obtained in other studies that the presence of SARS-CoV-2 RNA in urine is a very rare finding. The absence of SARS-CoV-2 RNA in urine in the recovered patients might suggest that the urinary route is very rarely used for viral particle clearance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...